*por Giant Steps

Na sétima edição da parceria entre a Rico e a Giant Steps, vamos nos aprofundar em um assunto notório por sua complexidade: os tipos de algoritmos utilizados em fundos quant. Ao final do artigo, esperamos que você conclua que, apesar de sua fama, eles não são tão complexos assim. Boa Leitura!

Antes de entrarmos nas especificidades dos tipos de algoritmos, vale reforçar o motivo pelo qual uma gestora quantitativa trabalha com tanto afinco para criar vários modelos, e não um único super-poderoso.

Algoritmos exploram padrões (estruturas nas bases de dados) que se repetem com o tempo. Porém, parando para pensar, se o mercado fosse totalmente eficiente não faria sentido nenhum ter um padrão que se repete com o tempo — ou melhor ainda: o passado não deveria ser capaz de prever o futuro.

Dado que é possível lucrar (muito) utilizando padrões, podemos concluir que o mercado não é perfeitamente eficiente. Em outras palavras, padrões são ineficiências de mercado. Assim como nós encontramos essas ineficiências, outros players (agentes de mercado) também tendem a descobri-las e explorá-las em algum momento, o que provavelmente esgotará essa fonte de lucro. Portanto, é crucial que uma gestora quantitativa continuamente procure por novos padrões e desenvolva algoritmos para explorá-los. No final do dia, a consistência de resultado do fundo depende diretamente da capacidade de criação de novos algoritmos, que substituem aqueles que param de funcionar ao longo do tempo.

A matéria prima

Para começar a compreender os padrões explorados, a primeira etapa é entender sobre a matéria prima de qualquer modelo sistemático: os dados. Existem dois tipos de dados que podem ser utilizados para criar modelos quantitativos: dados estruturados, que são os que podem ser facilmente adquiridos e planilhados (preço, volume, book de ofertas, etc), e dados não-estruturados, que podem ser basicamente qualquer coisa (imagens, tweets, timbre de voz, log de pesquisas, notícias, etc).

Nesse artigo, focaremos em modelos que rodam com dados estruturados. Como você pode imaginar, grande parte do investimento (financeiro e de pessoas-hora) de um fundo quantitativo é utilizado na obtenção e no tratamento dos dados. No Brasil, os fundos quantitativos ainda não ganharam o tamanho que os fundos quantitativos lá fora já tem, o que limita o capital disponível. Nesse sentido, ainda não há nenhum fundo brasileiro operando dados não-estruturados, principalmente porque o custo de se obter e tratar esse tipo de dado é inúmeras vezes maior do que o custo de se utilizar dados estruturados.

Em um próximo artigo, falaremos mais a fundo dos dados não-estruturados, e daremos exemplos de estratégias que já estão sendo utilizadas pelos Hedge Funds no exterior.

As três estratégias mais comuns

Explicaremos a seguir três das metodologias mais comuns e conhecidas no mundo dos quantitativos. A ideia é passar a intuição básica por trás de cada uma delas. Obviamente existem outros tipos de estratégia, mas grande parte dos modelos deriva de alguma forma das estratégias descritas neste artigo.

Trend Following (“Seguidor de tendência”)

Estratégia mais antiga dos quantitativos, e talvez o método com o conceito mais simples, os modelos de tendência buscam comprar os ativos que estão subindo e vender os ativos que estão caindo. A ideia básica deste padrão é a de que um ativo que começou uma trajetória de valorização (ou desvalorização) tende a continuar valorizando (ou desvalorizando).

Existem várias explicações teóricas para esse comportamento, mas, em geral, a teoria mais aceita é a do viés comportamental do investidor, mais especificamente conhecido como “Medo de ficar de fora” ou FOMO (“Fear Of Missing Out”, em inglês). Essa característica psicológica faz com que os investidores invistam em ativos que estão em um processo de valorização, reforçando a trajetória do ativo.

Assim como qualquer tipo de estratégia, o segredo está nos detalhes. Ou, mais especificamente, na parametrização do modelo: o que caracteriza o início de uma tendência? Qual janela de tempo devo olhar? Se for para comprar, compro quanto? Quando aumento minha posição? Quando saio da posição? Quando re-parametrizo estes gatilhos? Esses detalhes, que são definidos após inúmeros testes e simulações dentro de um fundo quant, fazem a diferença entre um modelo ganhador e um modelo perdedor.

A parametrização dos modelos é resultado de um processo dinâmico, que incorpora os resultados na medida em que estes ficam disponíveis, alterando cada um desses detalhes conforme o tempo passa. Em outras palavras, pode se dizer que um modelo tende a ficar mais preciso com o tempo, uma vez que ele enxerga uma amostra mais completa do comportamento de determinado ativo.

Mean-Reversion (“Reversão à média”)

À primeira impressão, esse tipo de modelo é diametralmente oposto ao modelo de tendência. A ideia é a de que o preço de um determinado ativo (ou conjunto de ativos) tende a retornar para o preço de sua média histórica. Em outras palavras, quando o ativo sofre uma valorização acima de seu preço médio, o modelo venderá esse ativo apostando na volta do preço para a média. Caso o ativo se desvalorize abaixo da média, o modelo comprará.

Muito provavelmente você deve estar pensando que, se os modelos de tendência funcionam, é impossível que o modelo de reversão à média ganhe dinheiro. A verdade é que um mesmo ativo pode seguir os dois padrões ao mesmo tempo, e a chave para entender esse paradoxo é a janela de tempo a qual você está examinando. Não é incomum o fato de alguns ativos seguirem um padrão de reversão à média em janelas curtas de tempo, mas seguirem movimentações de tendência no longo prazo. Além disso, ativos diferentes tendem a ter comportamentos distintos, de forma que, geralmente, cada um possui um tipo de padrão mais pronunciado. O trabalho dos gestores é identificar qual padrão se adequa melhor a cada tipo de ativo, e em qual janela esse movimento é mais robusto. Lembre-se sempre que há muito ruído no mercado, o que faz com que captar esses comportamentos não seja tarefa fácil.

A reversão à média é um comportamento natural do ser humano, conforme destacado pelo ganhador do prêmio Nobel em Economia, Daniel Kahneman, em seu livro Pensando Rápido e Devagar (Thinking Fast and Slow). Kahneman destaca esse tipo de padrão comportamental com exemplos de quando trabalhava para a força aérea israelense: percebeu que sempre que um piloto era elogiado por um voo acima da média, esse piloto apresentava uma tendência de realizar voos piores em sequência. Kahneman explica que esse é apenas um exemplo dos vários campos de atuação humana nos quais identificou padrões claros de reversão à média.

Cointegração

Os modelos de cointegração possuem uma característica similar à estratégia “long & short”, que é bastante conhecida no mercado. A principal diferença entre esse tipo de padrão e os mencionados anteriormente é que a cointegração necessariamente opera múltiplos ativos.

A ideia básica desse tipo de modelo é medir o comportamento de uma cesta de ativos ao longo do tempo, destacando a relação que esses ativos mantiveram entre si. Uma vez que o gestor definiu um padrão de correlação entre os ativos, o modelo “arbitrará” sempre que um dos ativos fuja do padrão histórico. Sendo assim, se um ativo começa a se desvalorizar em relação aos outros, e o comportamento histórico é o de paridade entre os preços dos ativos, o modelo comprará esperando a normalização do padrão (nesse caso, apostando que o ativo se valorizará e voltará à situação de paridade).

É possível utilizar modelos de cointegração entre ativos de uma mesma classe (ações, moedas, etc) ou entre classes diferentes de ativo. O importante é o gestor identificar uma relação robusta entre ativos.

Como exemplo, imagine que você vem acompanhando uma cesta de ações de empresas de um mesmo setor. Essas ações tendem a ter um comportamento similar ao longo do tempo, mas por alguma razão uma delas começa a destoar das outras. Nesse caso, o modelo de cointegração montaria uma aposta na volta dessa ação ao mesmo patamar dos seus peers.

Machine Learning

Ao contrário do que muitos imaginam, o machine learning não é um tipo de modelo específico, e sim uma metodologia utilizada para criação de novos modelos. Em modelos tradicionais, o processo de criação de um modelo parte da elaboração de uma hipótese pelo gestor (algum tipo de padrão que talvez possa ser explorado), que será testada exaustivamente e, caso haja evidências concretas de que essa hipótese funcione, será implementada pela equipe de tecnologia por meio de um algoritmo. Em outras palavras, a ideia do modelo sai da cabeça do gestor.

No caso do machine learning, os dados são disponibilizados para os computadores para que encontrem padrões. Nesse tipo de metodologia, quem cria a hipótese não é uma pessoa. Apesar disso, muitas vezes um modelo criado dessa forma pode ser muito similar a um dos mencionados acima, ou até mesmo uma mescla. 

Só como curiosidade, o machine learning não é utilizado apenas para criar estratégias dentro do fundo. Nós utilizamos muito essa ferramenta na execução de ordens, minimizando os custos de transação e o impacto que nossas ordens geram nos preços do mercado. Esse é um assunto que trataremos nos próximos artigos.

Outras formas de classificação dos modelos

Além de classificar os modelos por tipo de estratégia, podemos também classificá-los por frequência de operação e por tipo de ativo.

Por frequência de operação

Como regra geral, pode-se dividir os algoritmos entre intradiários, que operam durante o dia mas “dormem” zerados e os que tomam posição direcional (apostando em movimentos de valorização ou desvalorização que podem durar dias, semanas ou meses) e “dormem” com posição.

Vale ressaltar que os modelos de alta-frequência, cujo objetivo é arbitrar mercados em milisegundos através de milhões de operações, não são uma estratégia que executamos atualmente.

Por classe de ativo

Existem quatro grandes classes de ativos: juros, câmbio, bolsa e commodities. Um modelo direcional ou intradiário pode operar em um ou vários desses mercados.

A vida útil dos modelos

Conforme mencionamos no começo deste texto, os modelos exploram padrões, que se esgotarão em algum momento. Nesse sentido, mais valiosa do que os modelos de um fundo quantitativo, é a capacidade da gestora de criação de novos modelos.

Não há uma regra concreta sobre quanto tempo dura um modelo, mas pode-se dizer que quanto menos óbvio ele for (quanto menos pessoas conseguirem perceber e explorar essa ineficiência), mais tempo e mais valor ele tende a gerar.

Como exemplo, o Zarathustra nasceu em 2012 com 4 modelos, dos quais apenas 1 continua em atuação dentro do fundo. Nesse sentindo, temos um modelo que já performa há 7 anos. Por outro lado, alguns modelos duram apenas alguns meses.

Juntando tudo

O Zarathustra é, portanto, um fundo composto por uma série de modelos que estão explorando diferentes estratégias em diferentes mercados em períodos distintos. Mais especificamente, hoje o fundo conta com mais de 20 modelos que atuam nos mercados de câmbio, juros, bolsa e commodities, tanto no Brasil como no exterior. É daí que surge a tal descorrelação, elemento extremamente valioso para o investidor e raríssimo de ser encontrado.

Elaborado por:

Bruna Sene, CNPI-T 1847

1) Este relatório de análise foi elaborado pela Rico Investimentos, que é uma marca da XP Investimentos CCTVM S.A. (“Rico”) de acordo com todas as exigências previstas na Resolução CVM nº 20/2021, tem como objetivo fornecer informações que possam auxiliar o investidor a tomar sua própria decisão de investimento, não constituindo qualquer tipo de oferta ou solicitação de compra e/ou venda de qualquer produto. As informações contidas neste relatório são consideradas válidas na data de sua divulgação e foram obtidas de fontes públicas. A Rico não se responsabiliza por qualquer decisão tomada pelo cliente com base no presente relatório.

2) Este relatório foi elaborado considerando a classificação de risco dos produtos de modo a gerar resultados de alocação para cada perfil de investidor.

3) O(s) signatário(s) deste relatório declara(m) que as recomendações refletem única e exclusivamente suas análises e opiniões pessoais, que foram produzidas de forma independente, inclusive em relação à Rico e que estão sujeitas a modificações sem aviso prévio em decorrência de alterações nas condições de mercado, e que sua(s) remuneração(es) é(são) indiretamente influenciada por receitas provenientes dos negócios e operações financeiras realizadas pela Rico.

4) O analista responsável pelo conteúdo deste relatório e pelo cumprimento da Resolução CVM nº 20/2021 está indicado acima, sendo que, caso constem a indicação de mais um analista no relatório, o responsável será o primeiro analista credenciado a ser mencionado no relatório.

5) Os analistas da Rico estão obrigados ao cumprimento de todas as regras previstas no Código de Conduta da APIMEC para o Analista de Valores Mobiliários e na Política de Conduta dos Analistas de Valores Mobiliários do Grupo XP.

6) Os produtos apresentados neste relatório podem não ser adequados para todos os tipos de cliente. Antes de qualquer decisão, os clientes deverão realizar o processo de suitability e confirmar se os produtos apresentados são indicados para o seu perfil de investidor. Este material não sugere qualquer alteração de carteira, mas somente orientação sobre produtos adequados a determinado perfil de investidor.

7) A rentabilidade de produtos financeiros pode apresentar variações e seu preço ou valor pode aumentar ou diminuir num curto espaço de tempo. Os desempenhos anteriores não são necessariamente indicativos de resultados futuros. A rentabilidade divulgada não é líquida de impostos. As informações presentes neste material são baseadas em simulações e os resultados reais poderão ser significativamente diferentes.

8) Este relatório é destinado à circulação exclusiva para a rede de relacionamento da Rico. Fica proibida sua reprodução ou redistribuição para qualquer pessoa, no todo ou em parte, qualquer que seja o propósito, sem o prévio consentimento expresso da Rico.

9) SAC. 0800 774 0402. A Ouvidoria da Rico tem a missão de servir de canal de contato sempre que os clientes que não se sentirem satisfeitos com as soluções dadas pela empresa aos seus problemas. O contato pode ser realizado por meio do telefone: 0800-722-3730.

10) O custo da operação e a política de cobrança estão definidos nas tabelas de custos operacionais disponibilizadas no site da Rico: https://www.rico.com.vc/custos. 11) A Rico se exime de qualquer responsabilidade por quaisquer prejuízos, diretos ou indiretos, que venham a decorrer da utilização deste relatório ou seu conteúdo. 

12) A Avaliação Técnica e a Avaliação de Fundamentos seguem diferentes metodologias de análise. A Análise Técnica é executada seguindo conceitos como tendência, suporte, resistência, candles, volumes, médias móveis entre outros. Já a Análise Fundamentalista utiliza como informação os resultados divulgados pelas companhias emissoras e suas projeções. Desta forma, as opiniões dos Analistas Fundamentalistas, que buscam os melhores retornos dadas as condições de mercado, o cenário macroeconômico e os eventos específicos da empresa e do setor, podem divergir das opiniões dos Analistas Técnicos, que visam identificar os movimentos mais prováveis dos preços dos ativos, com utilização de “stops” para limitar as possíveis perdas. 

13) Antes de qualquer decisão, os clientes deverão realizar o processo de suitability e confirmar se os produtos apresentados são indicados para o seu perfil de investidor.